Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells

نویسندگان

  • Loïs S Miraucourt
  • Jennifer Tsui
  • Delphine Gobert
  • Jean-François Desjardins
  • Anne Schohl
  • Mari Sild
  • Perry Spratt
  • Annie Castonguay
  • Yves De Koninck
  • Nicholas Marsh-Armstrong
  • Paul W Wiseman
  • Edward S Ruthazer
چکیده

Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl(-) levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl(-) regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation.

During vertebrate neurogenesis, multiple extracellular signals influence progenitor cell fate choices. The process by which uncommitted progenitor cells interpret and integrate signals is not well understood. We demonstrate here that in the avascular chicken retina, vascular endothelial growth factor (VEGF) secreted by postmitotic neurons acts through the FLK1 receptor present on progenitor cel...

متن کامل

Quercetin Synergistically Enhances the Anticancer Efficacy of Docetaxel through Induction of Apoptosis and Modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 Signaling Pathways in MDA-MB-231 Breast Cancer Cell Line

Docetaxel is widely used in the treatment of metastatic breast cancer. However, its effectiveness is limited due to chemoresistance and its undesirable side effects. The combination of chemotherapeutic agents and natural compounds is an effective strategy to overcome drug resistance and the ensuing inevitable toxicities. Quercetin is a natural flavonoid with strong antioxidant and anticancer ac...

متن کامل

Characterization of Ca2+-binding protein 5 knockout mouse retina.

PURPOSE The goal of this study was to investigate, with the use of CaBP5 knockout mice, whether Ca(2+)-binding protein 5 (CaBP5) is required for vision. The authors also tested whether CaBP5 can modulate expressed Ca(v)1.2 voltage-activated calcium channels. METHODS CaBP5 knockout (Cabp5(-/-)) mice were generated. The retinal morphology and visual function of 6-week-old Cabp5(-/-) mice were a...

متن کامل

Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways.

PURPOSE Brain-derived neurotrophic factor (BDNF) has a potential neuroprotective effect on axotomized retinal ganglion cells (RGCs); however, the mechanism, in regard to intracellular signaling, of BDNF-induced neuroprotection of RGCs is largely unknown. Intracellular signaling was investigated, by using axotomized RGCs and the relative contribution of the two major downstream signaling routes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016